Recurrent Network Dynamics; a Link between Form and Motion
نویسندگان
چکیده
To discriminate visual features such as corners and contours, the brain must be sensitive to spatial correlations between multiple points in an image. Consistent with this, macaque V2 neurons respond selectively to patterns with well-defined multipoint correlations. Here, we show that a standard feedforward model (a cascade of linear-non-linear filters) does not capture this multipoint selectivity. As an alternative, we developed an artificial neural network model with two hierarchical stages of processing and locally recurrent connectivity. This model faithfully reproduced neurons' selectivity for multipoint correlations. By probing the model, we gained novel insights into early form processing. First, the diverse selectivity for multipoint correlations and complex response dynamics of the hidden units in the model were surprisingly similar to those observed in V1 and V2. This suggests that both transient and sustained response dynamics may be a vital part of form computations. Second, the model self-organized units with speed and direction selectivity that was correlated with selectivity for multipoint correlations. In other words, the model units that detected multipoint spatial correlations also detected space-time correlations. This leads to the novel hypothesis that higher-order spatial correlations could be computed by the rapid, sequential assessment and comparison of multiple low-order correlations within the receptive field. This computation links spatial and temporal processing and leads to the testable prediction that the analysis of complex form and motion are closely intertwined in early visual cortex.
منابع مشابه
Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator's straight-line example
In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index....
متن کاملBrownian Motion: The Link Between Probability and Mathematical Analysis
This article has no abstract.
متن کاملDynamics of Flexible Manipulators
This paper presents an application of Continuum (i.e. Lagrangian) and Finite Element Techniques to flexible manipulator arms for derivation of the corresponding Dynamic Equations of Motion. Specifically a one-link flexible arm is considered for detailed analysis, and the results are extended for the case of a two - link flexible manipulator. Numerical examples are given for the case of both one...
متن کاملDifferent-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network
By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solve...
متن کاملadaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کامل